Atomic resolution structures and the mechanism of ion pumping in bacteriorhodopsin.
نویسندگان
چکیده
A structure-based approach to the mechanism of ion pumping in bacteriorhodopsin (BR) has fostered new hypotheses for the detailed molecular changes that underlie ion transport in this light-driven pump. Isomerization of the retinal from all-trans to 13-cis in response to absorption of the energy of a photon is thought to lead to proton transfer from the initially protonated Schiff base to an anionic aspartate residue (Asp85) in the first half of the BR photocycle. In this traditional view the proton is transferred directly from the Schiff base to Asp85. A comparison of structures of photocycle intermediates trapped shortly after proton transfer to Asp85 to those of the resting state suggested an alternative view for the mechanism of proton transfer. In this scenario, a local water molecule in hydrogen bond contact with the Schiff base and Asp85 in the resting state is destabilized upon isomerization of the retinal. The destabilized water loses a proton to Asp85 and the remaining hydroxyl anion migrates toward the positively charged Schiff base to abstract its proton. This mechanism, in which a hydroxyl ion is pumped in lieu of a proton, has now been challenged by interpretations of new structures for photointermediates that immediately precede and follow the deprotonation/protonation reaction. However, in contrast to the older structures in which photointermediates were prepared at room temperature, the new structures were obtained by illuminating wild-type BR in frozen crystals. The results of spectroscopic studies of BR suggest that the structures of intermediates trapped at low temperature may not be the same as native photocycle intermediates at room temperature. The precise mechanism of ion transfer in BR is therefore unresolved.
منابع مشابه
Surface structures of native bacteriorhodopsin depend on the molecular packing arrangement in the membrane.
Bacteriorhodopsin is the one of the best-studied models of an ion pump. Five atomic models are now available, yet their comparison reveals differences of some loops connecting the seven transmembrane alpha-helices. In an attempt to resolve this enigma, topographs were recorded in aqueous solution with the atomic force microscope (AFM) to reveal the most native surface structure of bacteriorhodo...
متن کاملLocal-global conformational coupling in a heptahelical membrane protein: transport mechanism from crystal structures of the nine states in the bacteriorhodopsin photocycle.
Proton pumps utilize a chemical or photochemical reaction to create pH and electrical gradients between the interior and the exterior of cells and organelles that energize ATP synthesis and the accumulation and extrusion of solutes and ions. G-protein coupled receptors bind agonists and assume signaling states that communicate with the coupled transducers. How these two kinds of proteins conver...
متن کاملNano-bio Hybrid Material Based on Bacteriorhodopsin and ZnO for Bioelectronics Applications
Bioelectronics has attracted increasing interest in recent years because of their applications in various disciplines, such as biomedical. Development of efficient bio-nano hybrid materials is a new move towards revolution of nano-bioelectronics. A novel nano-bio hybrid electrode based on ZnO–protein for bioelectronics applications was prepared and characterized. The electrode was made by coval...
متن کاملNano-bio Hybrid Material Based on Bacteriorhodopsin and ZnO for Bioelectronics Applications
Bioelectronics has attracted increasing interest in recent years because of their applications in various disciplines, such as biomedical. Development of efficient bio-nano hybrid materials is a new move towards revolution of nano-bioelectronics. A novel nano-bio hybrid electrode based on ZnO–protein for bioelectronics applications was prepared and characterized. The electrode was made by coval...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Frontiers in bioscience : a journal and virtual library
دوره 9 شماره
صفحات -
تاریخ انتشار 2004